The immune modulating properties of the heat shock proteins after brain injury
نویسندگان
چکیده
Inflammation within the central nervous system often accompanies ischemia, trauma, infection, and other neuronal injuries. The immune system is now recognized to play a major role in neuronal cell death due to microglial activation, leukocyte recruitment, and cytokine secretion. The participation of heat shock proteins (Hsps) in the immune response following in brain injury can be seen as an attempt to correct the inflammatory condition. The Hsps comprise various families on the basis of molecular size. One of the most studied is Hsp70. Hsp70 is thought to act as a molecular chaperone that is present in almost intracellular compartments, and function by refolding misfolded or aggregated proteins. Hsps have recently been studied in inflammatory conditions. Hsp70 can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. In this review, we will focus on underlying inflammatory mechanisms and Hsp70 in acute neurological injury.
منابع مشابه
Heat Shock Proteins Enriched-Promastigotes of Leishmania major Inducing Th2 Immune Response in BALB/c Mice
Background: Heat shock proteins (HSP) are highly conserved molecules with many immunological functions. They are highly immunogenic with important role in cancer immunotherapy and in vaccine development against infectious diseases. As adjuvant, HSP can augment the immunogenicity of weak antigens and can stimulate antigen presenting cells. Although vaccines have been successful for many infec...
متن کاملHyperglycemia and antibody titres against heat shock protein 27 in traumatic brain injury patients on parenteral nutrition
Objective(s):Hyperglycemia worsens the neuronal death induced by cerebral ischemia. Previous studies demonstrated that diabetic hyperglycemia suppressed the expression of heat shock protein 70 and 60 (HSP70 and 60) in the liver. IgG antibody titres against heat shock protein 27 (anti HSP27) were measured to determine whether hyperglycemia exacerbates ischemic brain damage by suppressing the exp...
متن کاملProtective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury
Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain. Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot qua...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملProtective Effects of Nucleobinding-2 After Cerebral Ischemia Via Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein Expression
Introduction: Nucleobinding-2 (NUCB2) or nesfatin-1, a newly identified anorexigenic peptide, has antioxidant, anti-inflammatory, and anti-apoptotic properties. Brain ischemia-reperfusion induces irreversible damages, especially in the hippocampus area. However, the therapeutic effects of NUCB2 have not been well investigated in cerebral ischemia. This study was designed for the first time to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 46 شماره
صفحات -
تاریخ انتشار 2013